
Unit 4: Full Factorial Experiments at Two Levels

Source : Chapter 4 (sections 4.1-4.4, 4.6-4.12, 4.15).

• An Epitaxial Layer Growth Experiment (Section 4.1).

• Basic concepts for 2k designs (Section 4.2).

• Factorial effects and plots (Section 4.3).

• Using Regression to Compute Factorial Effects (Section 4.4).

• Fundamental principles (Section 4.6).

• Comparisons with ”one-factor-at-a-time” approach (Section 4.7).

• Normal and Half-normal plots for detecting effect significance (Section 4.8).

• Lenth’s Method (Section 4.9).

• Nominal-the best problem, quadratic loss function (Section 4.10).

• Use of Log Sample Variance for Dispersion Analysis (Section4.11).

• Analysis of Location and Dispersion: Epitaxial Growth Experiment (Section 4.12).

• Blocking in 2k design (Section 4.15).
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Epitaxial Layer Growth Experiment

• An AT&T experiment based on 24 design; four factors each at two levels.

There are 6 replicates for each of the 16 (=24) level combinations; data

given on the next page.

Table 1: Factors and Levels, Adapted Epitaxial Layer GrowthExperiment

LevelFactor − +

A. susceptor-rotation method continuous oscillating

B. nozzle position 2 6

C. deposition temperature (◦C) 1210 1220

D. deposition time low high

• Objective : Reduce variation ofy (=layer thickness) around its target 14.5

µm by changing factor level combinations.
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Data from Epitaxial Layer Growth Experiment

Table 2: Design Matrix and Thickness Data, Adapted EpitaxialLayer Growth

Experiment

Factor

Run A B C D Thickness ȳ s2 lns2

1 − − − + 14.506 14.153 14.134 14.339 14.953 15.455 14.59 0.270 -1.309

2 − − − − 12.886 12.963 13.669 13.869 14.145 14.007 13.59 0.291 -1.234

3 − − + + 13.926 14.052 14.392 14.428 13.568 15.074 14.24 0.268 -1.317

4 − − + − 13.758 13.992 14.808 13.554 14.283 13.904 14.05 0.197 -1.625

5 − + − + 14.629 13.940 14.466 14.538 15.281 15.046 14.65 0.221 -1.510

6 − + − − 14.059 13.989 13.666 14.706 13.863 13.357 13.94 0.205 -1.585

7 − + + + 13.800 13.896 14.887 14.902 14.461 14.454 14.40 0.222 -1.505

8 − + + − 13.707 13.623 14.210 14.042 14.881 14.378 14.14 0.215 -1.537

9 + − − + 15.050 14.361 13.916 14.431 14.968 15.294 14.67 0.269 -1.313

10 + − − − 14.249 13.900 13.065 13.143 13.708 14.255 13.72 0.272 -1.302

11 + − + + 13.327 13.457 14.368 14.405 13.932 13.552 13.84 0.220 -1.514

12 + − + − 13.605 13.190 13.695 14.259 14.428 14.223 13.90 0.229 -1.474

13 + + − + 14.274 13.904 14.317 14.754 15.188 14.923 14.56 0.227 -1.483

14 + + − − 13.775 14.586 14.379 13.775 13.382 13.382 13.88 0.253 -1.374

15 + + + + 13.723 13.914 14.913 14.808 14.469 13.973 14.30 0.250 -1.386

16 + + + − 14.031 14.467 14.675 14.252 13.658 13.578 14.11 0.192 -1.650
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2k Designs: A General discussion

• 2×2× . . .×2 = 2k design.

• Planning matrix vs model matrix (see Tables 4.3, 4.5).

• Run order and restricted randomization (see Table 4.4).

• Balance: each factor level appears the same number of times in the design.

• Orthogonality: for any pair of factors, each possible level combination

appears the same number of times in the design.

• Replicated vs unreplicated experiment.

4



Main effects and Plots
• Main effect of factor A:

ME(A) = z̄(A+)− z̄(A−).

• Advantages of factorial designs (R.A.Fisher):reproducibilityandwider

inductive basisfor inference.

• Informal analysis using themain effects plotcan be powerful.
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Figure 1:Main Effects Plot, Adapted Epitaxial Layer Growth Experiment
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Interaction Effects

• Conditional main effect of B at+ level ofA:

ME(B|A+) = z̄(B+ |A+)− z̄(B−|A+).

• Two-factor interaction effect betweenA andB:

INT(A,B) =
1
2
{ME(B|A+)−ME(B|A−)}

=
1
2
{ME(A|B+)−ME(A|B−)}

=
1
2
{z̄(A+ |B+)+ z̄(A−|B−)}−

1
2
{z̄(A+ |B−)+ z̄(A−|B+)},

(1)

The first two definitions in (1) give more insight on the term ”interaction”

than the third one in (1). The latter is commonly used in standard texts.

6



Interaction Effect Plots
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Figure 2: Interaction Plots, Adapted Epitaxial Layer Growth Experiment
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Synergistic and Antagonistic Plots

• An A-against-B plot issynergysticif ME(B|A+)ME(B|A−) > 0

andantagonisticif ME(B|A+)ME(B|A−) < 0.

An antagonistic plot suggests a morecomplexunderlying relationship than

what the data reveal.
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Figure 3: C-against-D andD-against-C Plots, Adapted Epitaxial Layer Growth

Experiment
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More on Factorial Effects

INT(A,B,C) =
1
2

INT(A,B|C+)−
1
2

INT(A,B|C−) =
1
2

INT(A,C|B+)

−
1
2

INT(A,C|B−) =
1
2

INT(B,C|A+)−
1
2

INT(B,C|A−).

INT(A1,A2, . . . ,Ak) =
1
2

INT(A1,A2, . . . ,Ak−1|Ak+)−
1
2

INT(A1,A2, . . . ,Ak−1|Ak−).

• A general factorial effect

θ̂ = z̄+ − z̄−,

wherez̄+ andz̄− are averages of one half of the observations. IfN is the

total number of observations,

Var(θ̂) =
σ2

N/2
+

σ2

N/2
=

4
N

σ2,

σ2 = variance of an observation.
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Using Regression Analysis to Compute Factorial

Effects

Consider the 23 design for factorsA, B andC, whose columns are denoted byx1,

x2 andx3 (=1 or -1).

The interactionsAB, AC, BC, ABCare then equal to

x4 = x1x2,x5 = x1x3,x6 = x2x3,x7 = x1x2x3 (see Table 3).

Use the regression model

zi = β0 +
7

∑
j=1

β jxi j + εi ,

wherei = ith observation.

The regression (i.e., least squares) estimate ofβ j is

β̂ j =
1

1− (−1)
(z̄(xi j = +1)− z̄(xi j = −1))

= 1
2(factorial effect of variablex j )
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Model Matrix for 23 Design

Table 3: Model Matrix for 23 Design

1 2 3 12 13 23 123

A B C AB AC BC ABC

− − − + + + −

− − + + − − +

− + − − + − +

− + + − − + −

+ − − − − + +

+ − + − + − −

+ + − + − − −

+ + + + + + +
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Factorial Effects, Adapted Epi-Layer Growth

Experiment

Table 4: Factorial Effects, Adapted Epitaxial Layer GrowthExperiment

Effect ȳ lns2

A -0.078 0.016

B 0.173 -0.118

C -0.078 -0.112

D 0.490 0.056

AB 0.008 0.045

AC -0.093 -0.026

AD -0.050 -0.029

BC 0.058 0.080

BD -0.030 0.010

CD -0.345 0.085

ABC 0.098 -0.032

ABD 0.025 0.042

ACD -0.030 0.000

BCD 0.110 -0.003

ABCD 0.020 0.103
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Fundamental Principles in Factorial Design

• Effect Hierarchy Principle
(i) Lower order effects are more likely to be important than higher order

effects.

(ii) Effects of the same order are equally likely to be important.

• Effect Sparsity principle (Box-Meyer)

The number of relatively important effects in a factorial experiment is small.

This is similar to thePareto Principlein quality investigation.

Effect hierarchy and sparsity principles are more effective/relevant for

screening experiments.

• Effect Heredity Principle (Hamada-Wu)

In order for an interaction to be significant, at least one of its parent factors

should be significant.

For modeling, McCullagh and Nelder called it theMarginality Principle.
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One-Factor-At-A-Time (ofat) Approach

Table 5: Planning Matrix for 23 Design and Response Data For Comparison with

One-Factor-At-A-Time Approach

Factor Percent

P R S Burned

1200 0.3 slow 11

1200 0.3 fast 17

1200 0.6 slow 25

1200 0.6 fast 29

1400 0.3 slow 02

1400 0.3 fast 09

1400 0.6 slow 37

1400 0.6 fast 40
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One-Factor-At-A-Time (ofat) Approach (Contd.)
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Figure 4: The Path of a One-Factor-At-A-Time Plan

The three steps of ofat as illustrated in the arrows in Figure4 are detailed in steps
1-3 on page 174 of WH.
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Disadvantages of ofat Approach Relative to

Factorial Approach

1. It requires more runs for the same precision in effect estimation. In the

example, the 23 design requires 8 runs. For ofat to have the same precision,

each of the 4 corners on the ofat path needs to have 4 runs, totaling 16 runs.

In general, to be comparable to a 2k design, ofat would require 2k−1 runs at

each of thek+1 corners on its path, totaling(k+1)2k−1. The ratio is

(k+1)2k−1/2k = (k+1)/2.

2. It cannot estimate some interactions.

3. Conclusions for analysis not as general.

4. It can miss optimal settings.

For points 2−4, see Figure 4.
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Why Experimenters Continue to Use ofat?

• Most physical laws are taught by varying one factor at a time. Easier to

think and focus on one factor each time.

• Experimenters often have good intuition about the problem when thinking

in this mode.

• No exposure to statistical design of experiments.

• Challengesfor DOE researchers: To combine the factorial approach with

the good intuition rendered by the the ofat approach. Needs anew outlook.
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Normal Plot of Factorial Effects

• Supposêθi , i = 1, · · · , I , are the factorial effect estimates (example in Table

4). Order them aŝθ(1) ≤ ·· · ≤ θ̂(I). Normal probability plot (see Unit 2):

θ̂i (vertical) vs.Φ−1([i −0.5]/I) (horizontal)
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Figure 5:Normal Plot of Location Effects, Adapted Epitaxial Layer Growth Experiment
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Use of Normal Plot to Detect Effect Significance

• Deduction Step.Null hypothesisH0 : all factorial effects = 0 . UnderH0,

θ̂i ∼ N(0,σ2) and the resulting normal plot should follow astraight line.

• Induction Step. By fitting a straight line to the middle group of points

(around 0) in the normal plot,any effect whose corresponding point falls off

the line is declared significant(Daniel, 1959).

• Unlike t or F test, no estimate ofσ2 is required. Method is especially

suitable forunreplicatedexperiments. Int test,s2 is thereference quantity.

For unreplicated experiments, Daniel’s idea is to use thenormal curve as the

reference distribution.

• In Figure 5,D, CD (and possiblyB?) are significant. Method is informal

and judgemental.
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Normal and Half Normal Plots
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Figure 6:Comparison of Normal and Half-Normal Plots

20



Visual Misjudgement with Normal Plot

Potential misuse of normal plot :

In Figure 6 (top), by following the procedure for detecting effect significance,

one may declareC, K andI are significant, because they “deviate” from the

middle straight line. This iswrongbecause it ignores the obvious fact thatK and

I are smaller thanG andO in magnitude. This points to a potential visual

misjudgement and misuse with the normal plot.
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Half-Normal Plot

• Idea: Order the absolutêθ(i) values as|θ̂|(1) ≤ ·· · |θ̂|(I) and plot them on

the positive axis of the normal distribution (thus the term “half-normal”).

This would avoid the potential misjudgement between the positive and

negative values.

• Thehalf-normal probability plot consists of the points

(Φ−1(0.5+0.5[i −0.5]/I), |θ̂|(i)), for i = 1, . . . ,2k−1. (2)

• In Figure 6 (bottom), onlyC is declared significant. Notice thatK andI no

longer stand out in terms of the absolute values.

• For the rest of the book,half-normal plots will be used for detecting
effect significance
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A Formal Test of Effect Significance : Lenth’s

Method

• Sometimes it is desirable to have a formal test that can assign p values to the

effects. The following method is also available in packageslike SAS.

• Lenth’s Method

1. Compute the pseudo standard error

PSE= 1.5·median{|θ̂i |<2.5s0}
|θ̂i |,

where the median is computed among the|θ̂i | with |θ̂i | < 2.5s0 and

s0 = 1.5·median|θ̂i |.

(Justification : Ifθi = 0 and error is normal,s0 is aconsistentestimate of

the standard deviation ofθ̂i . Use of median gives “robustness” to

outlying values.)
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A Formal Test of Effect Significance (Contd.)

2. Compute

tPSE,i =
θ̂i

PSE
, for eachi.

If |tPSE,i | exceeds the critical value given in Appendix H (or from software),

θ̂i is declared significant.

• Two versions of the critical values are considered next.
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Two Versions of Lenth’s Method

• Individual Error Rate (IER)

H0 : all θi ’s = 0, normal error.

IERα at levelα is determined by

Prob(|tPSE,i | > IERα|H0) = α, for i = 1, · · · , I .

(Note : Becauseθi = 0, tPSE,i has thesamedistribution underH0 for all i.)

• Experiment-wise Error Rate (EER)

Prob(|tPSE,i | > EERα for at least onei, i = 1, . . . , I |H0)

= Prob(max
1≤i≤I

|tPSE,i | > EERα|H0) = α.

• EER accounts for the number of tests done in the experiment but often gives
conservative results (less powerful). In screening experiments, IER is more
powerful and preferable because many of theθi ’s are negligible (recall the
effect sparsity principle). The EER critical values can be inflated by
considering manyθi values. (Why?)
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Illustration with Adapted Epi-Layer Growth

Experiment

1. In Table 4, median|θ̂i | = 0.078,s0 = 1.5×0.078 = 0.117.

Trimming constant 2.5s0 = 2.5×0.117= 0.292, which eliminates 0.490

(D) and 0.345 (CD).

Then median{|θ̂i |<2.5s0}
|θ̂i | = 0.058,PSE= 1.5×0.058= 0.087.

The corresponding|tPSE| values appear in Table 6.

2. Forα = 0.01, IER0.01 = 3.63 for I = 15. By comparing with the|tPSE|

values,D andCD are significant at 0.01 level. Use of EER0.01 = 6.45 (for

I = 15) will not detect any effect significance. Analysis of the|tPSE| values

for lns2 (Table 6) detects no significant effect (details on page 182 of WH),

thus confirming the half-normal plot analysis in Figure 4.10 of section 4.8.

• p values of effects can be obtained from packages or by interpolating the

critical values in the tables in appendix H. (See page 182 forillustration).
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|tPSE| Values for Adapted Epi-Layer Growth

Experiment

Table 6:|tPSE| Values, Adapted Epitaxial Layer Growth Experiment

Effect ȳ lns2

A 0.90 0.25

B 1.99 1.87

C 0.90 1.78

D 5.63 0.89

AB 0.09 0.71

AC 1.07 0.41

AD 0.57 0.46

BC 0.67 1.27

BD 0.34 0.16

CD 3.97 1.35

ABC 1.13 0.51

ABD 0.29 0.67

ACD 0.34 0.00

BCD 1.26 0.05

ABCD 0.23 1.63
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Nominal-the-Best Problem

• There is a nominal or target valuet based on engineering design

requirements. Define a quantitative loss due to deviation ofy from t.

Quadratic loss : L(y, t) = c(y− t)2.

E(L(y, t)) = cVar(y)+c(E(y)− t)2.

• Two-step procedure for nominal-the-best problem:

(i) Select levels of some factors to minimizeVar(y).

(ii)Select the level of a factor not in (i) to moveE(y) closer tot.

A factor in step (ii) is anad justmentfactor if it has a significant effect on

E(y) but not onVar(y). Procedure is effective only if an adjustment factor

can be found. This is often done on engineering ground. (Examples of

adjustment factors : deposition time in surface film deposition process, mold

size in tile fabrication, location and spacing of markings on the dial of a

weighing scale).
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Why Take ln s2 ?

• It mapss2 over (0,∞) to ln s2 over (−∞,∞). Regression and ANOVA assume

the responses are nearly normal, i.e. over (−∞,∞).

• Better for variance prediction. Supposez= lns2. ẑ = predicted value of

lnσ2, theneẐ = predicted variance ofσ2, always nonnegative.

• Most physical laws have a multiplicative component. Log converts

multiplicity into additivity.

• Variance stabilizing property: next page.
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ln s2 as a Variance Stabilizing Transformation

• Assumeyi j ∼ N(0,σ2
i ). Then(ni −1)s2

i = ∑ni
j=1(yi j − ȳi)

2 ∼ σ2
i χ2

ni−1,

lns2
i = lnσ2

i + ln(χ2
ni−1/(ni −1)). (3)

• X a random variable,h a smooth function,

Var(h(X)) ≈ [h′(E(X))]2Var(X) (4)

• TakeX =
χ2

ν
ν andh = ln. ThenE(X) = 1 and Var(X) = 2

ν .

• Applying (3) toX =
χ2

ν
ν leads to

Var(ln(X)) ≈ [h′(1)]2
2
ν

=
2
ν
.

In (2), ν = ni −1, lns2
i ∼ N(lnσ2

i ,2(ni −1)−1). The variance of lns2
i ,

2(ni −1)−1, is nearly constant forni −1≥ 9.
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Epi-layer Growth Experiment Revisited

Original data from Shoemaker, Tsui and Wu (1991).

Table 7: Design Matrix and Thickness Data, Original Epitaxial Layer Growth

Experiment

Design

A B C D Thickness ȳ s2 lns2

− − − + 14.812 14.774 14.772 14.794 14.860 14.914 14.821 0.003 -5.771

− − − − 13.768 13.778 13.870 13.896 13.932 13.914 13.860 0.005 -5.311

− − + + 14.722 14.736 14.774 14.778 14.682 14.850 14.757 0.003 -5.704

− − + − 13.860 13.876 13.932 13.846 13.896 13.870 13.880 0.001 -6.984

− + − + 14.886 14.810 14.868 14.876 14.958 14.932 14.888 0.003 -5.917

− + − − 14.182 14.172 14.126 14.274 14.154 14.082 14.165 0.004 -5.485

− + + + 14.758 14.784 15.054 15.058 14.938 14.936 14.921 0.016 -4.107

− + + − 13.996 13.988 14.044 14.028 14.108 14.060 14.037 0.002 -6.237

+ − − + 15.272 14.656 14.258 14.718 15.198 15.490 14.932 0.215 -1.538

+ − − − 14.324 14.092 13.536 13.588 13.964 14.328 13.972 0.121 -2.116

+ − + + 13.918 14.044 14.926 14.962 14.504 14.136 14.415 0.206 -1.579

+ − + − 13.614 13.202 13.704 14.264 14.432 14.228 13.907 0.226 -1.487

+ + − + 14.648 14.350 14.682 15.034 15.384 15.170 14.878 0.147 -1.916

+ + − − 13.970 14.448 14.326 13.970 13.738 13.738 14.032 0.088 -2.430

+ + + + 14.184 14.402 15.544 15.424 15.036 14.470 14.843 0.327 -1.118

+ + + − 13.866 14.130 14.256 14.000 13.640 13.592 13.914 0.070 -2.653
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Epi-layer Growth Experiment: Effect Estimates

Table 8: Factorial Effects, Original Epitaxial Layer Growth Experiment

Effect ȳ lns2

A -0.055 3.834

B 0.142 0.078

C -0.109 0.077

D 0.836 0.632

AB -0.032 -0.428

AC -0.074 0.214

AD -0.025 0.002

BC 0.047 0.331

BD 0.010 0.305

CD -0.037 0.582

ABC 0.060 -0.335

ABD 0.067 0.086

ACD -0.056 -0.494

BCD 0.098 0.314

ABCD 0.036 0.109
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Epi-layer Growth Experiment: Half-Normal Plots
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Epi-layer Growth Experiment: Analysis and
Optimization

• From the two plots,D is significant for ¯y andA is significant forz= lns2.
D is an adjustment factor. Fitted models :

ŷ = α̂+ β̂DxD = 14.389+0.418xD,

ẑ = γ̂0 + γ̂AxA = −3.772+1.917xA,

• Two-step procedure:
(i) ChooseA at− level (continuous rotation).
(ii)ChoosexD = 0.266 to satisfy 14.5 = 14.389+0.418xD

If xD = 30 and 40 seconds forD = − and+, xD = 0.266 would correspond to
35+0.266(5) = 36.33 seconds.

• Predicted variance

σ̂2 = exp(−3.772+1.917(−1)) = (0.058)2.

This is too optimistic! Predicted values should be validated with a
confirmation experiment.
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2k Designs in2q Blocks

• Example: Arranging a 23 design in 2 blocks (of size 4). Use the 123 column

in Table 9 to define the blocking scheme: block I if 123 =− and block II if

123 =+. Therefore the block effect estimate ¯y(II )− ȳ(I) is identical to the

estimate of the 123 interaction ¯y(123= +)− ȳ(123= −). The block effect

B and the interaction 123 are calledconfounded. Notationally,

B = 123.

• By giving up the ability to estimate 123, this blocking scheme increases the

precision in the estimates of main effects and 2fi’s by arranging 8 runs in

two homogeneousblocks.

• Why sacrificing 123?

ans: Effect hierarchy principle.
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Arrangement of 23 Design in2 Blocks

Table 9: Arranging a 23 Design in Two Blocks of Size Four

Run 1 2 3 12 13 23 123 Block

1 − − − + + + − I

2 − − + + − − + II

3 − + − − + − + II

4 − + + − − + − I

5 + − − − − + + II

6 + − + − + − − I

7 + + − + − − − I

8 + + + + + + + II
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A 23 Design in 4 Blocks

• Similarly we can useB1 = 12andB2 = 13 to define two independent

blocking variables. The 4 blocks I, II, III and IV are defined by B1 = ± and

B2 = ± :

B1

B2 − +

− I III

+ II IV

• A 23 design in 4 blocks is given in Table 9. Confounding relationships:

B1 = 12,B2 = 13,B1B2 = 12×13= 23. Thus 12,13 and 23 are confounded

with block effects and thus sacrificed.
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Arranging a 23 Design in 4 Blocks

Table 10: Arranging a 23 Design in Four Blocks of Size Two

Run 1 2 3 B1(= 12) B2(= 13) 23 123 block

1 − − − + + + − IV

2 − − + + − − + III

3 − + − − + − + II

4 − + + − − + − I

5 + − − − − + + I

6 + − + − + − − II

7 + + − + − − − III

8 + + + + + + + IV
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Minimum Aberration Blocking Scheme

• On page 38,{I,12,13,23} forms theblock defining contrast subgroupfor

the 23 design in 4 blocks. For a more complicated example (25 design in 8

blocks), see page 196 of WH.

• For any blocking schemeb, let gi(b) = number ofi-factor interactions that

are confounded with block effects. Must requireg1(b) = 0 (because no

main effect should be confounded with block effects). For any two blocking

schemesb1 andb2, let r = smallesti such thatgi(b1) 6= gi(b2). If

gr(b1) < gr(b2), b1 is said to haveless aberrationthan schemeb2. (This is

justified by the effect hierarchy principle). A blocking scheme hasminimum

aberrationif no other blocking schemes have less aberration.

• Minimum aberration blocking schemes are given in Table 4A.1 ofWH.

• Theory is developed under the assumption of noblock× treatment

interactions.
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Comments on Board
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