Unit 4: Full Factorial Experiments at Two Levels

Source : Chapter 4 (sections 4.1-4.4, 4.6-4.12, 4.15).

e An Epitaxial Layer Growth Experiment (Section 4.1).

e Basic concepts for2designs (Section 4.2).

e Factorial effects and plots (Section 4.3).

e Using Regression to Compute Factorial Effects (Sectioh 4.4

e Fundamental principles (Section 4.6).

e Comparisons with "one-factor-at-a-time” approach (Secd.7).

e Normal and Half-normal plots for detecting effect significa (Section 4.8).
e Lenth’s Method (Section 4.9).

e Nominal-the best problem, quadratic loss function (Sectid 0).

e Use of Log Sample Variance for Dispersion Analysis (Secfidri).

e Analysis of Location and Dispersion: Epitaxial Growth Expgent (Section 4.12).

e Blocking in Z design (Section 4.15).
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Epitaxial Layer Growth Experiment

e An AT&T experiment based on*aesign; four factors each at two levels.
There are 6 replicates for each of the 164H2vel combinations; data
given on the next page.

Table 1: Factors and Levels, Adapted Epitaxial Layer Grd#tperiment

Factor _ Level
A. susceptor-rotation method| continuous oscillating
B. nozzle position 2 6
C. deposition temperaturé@) 1210 1220
D. deposition time low high

e Objective : Reduce variation of (=layer thickness) around its target 14.5
um by changing factor level combinations.
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Data from Epitaxial Layer Growth Experiment

Table 2: Design Matrix and Thickness Data, Adapted Epitaxajer Growth
Experiment

Factor
Run A B C D Thickness y 2 Ins?
1 — — — + 14.506 14.153 14.134 14.339 14.953 15.4595 14.59 0.270 -1.309
2 — — — — 12.886 12.963 13.669 13.869 14.145 14.0Q07 13.59 0.291 -1.234
3 - - + + 13.926 14.052 14.392 14.428 13.568 15.074 14.24 0.268 -1.317
4 — — + — 13.758 13.992 14.808 13.554 14.283 13.904 14.05 0.197 -1.625
5 — + - + 14.629 13.940 14.466 14.538 15.281 15.046 14.65 0.221 -1.510
6 — + - — 14.059 13.989 13.666 14.706 13.863 13.357 13.94 0.205 -1.585
7 — + + + 13.800 13.896 14.887 14.902 14.461 14.494 14.40 0.222 -1.505
8 — + + — 13.707 13.623 14.210 14.042 14.881 14.378 14.14 0.215 -1.537
9 + — — + 15.050 14.361 13.916 14.431 14.968 15.294 14.67 0.269 -1.313
10 + - — — 14.249 13.900 13.065 13.143 13.708 14.295 13.72 0.272 -1.302
11 + — + + 13.327 13.457 14.368 14.405 13.932 13.552 13.84 0.220 -1.514
12 + - + - 13.605 13.190 13.695 14.259 14.428 14.223 13.90 0.229 -1.474
13 + + — + 14.274 13.904 14.317 14.754 15.188 14,923 14.56 0.227 -1.483
14 + + — — 13.775 14.586 14.379 13.775 13.382 13.382 13.88 0.253 -1.374
15 + + + + 13.723 13.914 14.913 14.808 14.469 13.973 14.30 0.250 -1.386
16 + + + — 14.031 14.467 14.675 14.252 13.658 13.578 14.11 0.192 -1.650




2% Designs: A General discussion

2x2x...x2=2Xdesign.

Planning matrix vs model matrix (see Tables 4.3, 4.5).

Run order and restricted randomization (see Table 4.4).

Balance each factor level appears the same number of times in thgrdes

Orthogonality: for any pair of factors, each possible level combination
appears the same number of times in the design.

Replicated vs unreplicated experiment.



Main effects and Plots
e Main effect of factor A:
ME(A) = z(A+) — z(A—).

e Advantages of factorial designs (R.A.Fishagproducibilityandwider
Inductive basidor inference.

e Informal analysis using thmain effects plotcan be powerful.
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Figure 1:Main Effects Plot, Adapsted Epitaxial Layer Growth Experimhe



Interaction Effects

e Conditional main effect of B at + level of A:
ME(B|A+) = Z(B+|A+) —Z(B— |A+).
e Two-factor interaction effect betweenA andB:
INT(A,B) = %{ME(B\A—H — ME(B|A-)}
= 2 {ME(AIB}) - ME(AIB-)}
— %{Z—(A+|B+>+2‘(A—|B—)}—%{Z(A+\B—>+Z<A—\B+)},
(1)

The first two definitions in (1) give more insight on the termtéraction”
than the third one in (1). The latter is commonly used in shaddexts.
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Figure 2: Interaction Plots, Adapted Epitaxial Layer Grokixperiment
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Synergistic and Antagonistic Plots

e An A-againstB plot is synergystiéf ME (B|A+)ME(B|A—) >0
andantagonistidf ME (B|A+)ME(B|A—) < 0.
An antagonistic plot suggests a ma@mplexunderlying relationship than
what the data reveal.

Figure 3: C-againstb andD-against€ Plots, Adapted Epitaxial Layer Growth
Experiment



More on Factorial Effects

1 1 1
INT(AB,C) = ZINT(ABIC+) - ZINT(ABIC—)=ZINT(AC|B+)

1 1 1
—5INT(A,C[B~) = SINT(B,C|A+) ~ SINT(B,CIA-).

1 1
INT(ALAz,. .., A) = ZINT(AL Az, ..., A 1|Act) — ZINT (AL Ag, .., A 1| Ac—).
2 2

e A general factorial effect
6=z, -7,

wherez, andz_ are averages of one half of the observation§\ i$ the
total number of observations,
o> o 4,

Var(é):N—/2+N—/2:NG,

o2 = variance of an observation.
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Using Regression Analysis to Compute Factorial
Effects

Consider the 2design for factord\, B andC, whose columns are denoted Yy,
X2 andxsz (=1 or -1).
The interaction®\B, AC, BC, ABCare then equal to

X4 = X1X2,X5 = X1X3,Xg = X2X3,X7 = X1X2X3 (See Table 3).
Use the regression model

.
z=PBo+ > Bjxj+&i,
=1
wherei = it" observation.
The regression (i.e., least squares) estimafy) o

. 1
Bj = 1_(_1>( Z(

Xij = +1) —z(xj = —1))

= Z(factorial effect of variable;))
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Model Matrix for 23 Design

Table 3: Model Matrix for 2 Design

1 2 3 12 13 23 123
A B C AB AC BC ABC
- - - + + 4+ -

_ 4 o4 o

_|_
+

+ + + o+
_|_
|
_|_
|
|
|
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Factorial Effects, Adapted Epi-Layer Growth
Experiment

Table 4: Factorial Effects, Adapted Epitaxial Layer Grokttperiment

Effect y Ins2

A -0.078 0.016
B 0.173 -0.118
C -0.078 -0.112
D 0.490 0.056
AB 0.008 0.045
AC -0.093 -0.026
AD -0.050 -0.029
BC 0.058 0.080
BD -0.030 0.010
CD -0.345 0.085
ABC 0.098 -0.032
ABD 0.025 0.042
ACD -0.030 0.000
BCD 0.110 -0.003
ABCD 0.020 0.103
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Fundamental Principles in Factorial Design

e Effect Hierarchy Principle

(i) Lower order effects are more likely to be important thaghter order
effects.

(i1) Effects of the same order are equally likely to be impoitt

e Effect Sparsity principle (Box-Meyer)
The number of relatively important effects in a factorighexment is small.

This is similar to theéPareto Principlein quality investigation.

Effect hierarchy and sparsity principles are more effegtelevant for
screening experiments

e Effect Heredity Principle (Hamada-Wu)
In order for an interaction to be significant, at least ondparent factors
should be significant.

For modeling, McCullagh and Nelder called it tharginality Principle
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One-Factor-At-A-Time (ofat) Approach

Table 5: Planning Matrix for 2Design and Response Data For Comparison with
One-Factor-At-A-Time Approach

Factor Percent

P R S | Burned
1200 03 slow 11
1200 03  fast 17
1200 06 slow 25
1200 06  fast 29
1400 Q3 slow 02
1400 Q03  fast 09
1400 06 slow 37
1400 06  fast 40
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One-Factor-At-A-Time (ofat) Approach (Contd.)
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Figure 4: The Path of a One-Factor-At-A-Time Plan

The three steps of ofat as illustrated in the arrows in Figuaiee detailed in steps

1-3 on page 174 of WH.
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Disadvantages of ofat Approach Relative to
Factorial Approach

. It requires more runs for the same precision in effect edimnaln the
example, the 2design requires 8 runs. For ofat to have the same precision,
each of the 4 corners on the ofat path needs to have 4 rung)¢até runs.

In general, to be comparable to adesign, ofat would requiré“2! runs at
each of thek+ 1 corners on its path, totalingc+ 1)2<~*. The ratio is
(k4+1)2%1/2k = (k+1)/2.

. It cannot estimate some interactions
. Conclusions for analysis not as general

. It can miss optimal settings.

For points 2- 4, see Figure 4.

16



Why Experimenters Continue to Use ofat?

Most physical laws are taught by varying one factor at a tinesiéf to
think and focus on one factor each time.

Experimenters often have good intuition about the probldramthinking
In this mode.

No exposure to statistical design of experiments.

Challengesfor DOE researchers: To combine the factorial approach with
the good intuition rendered by the the ofat approach. Nee@svaoutlook.

17



Normal Plot of Factorial Effects

o Suppose@i,i =1,---,1, are the factorial effect estimates (example in Table
4). Order them aByy < --- < ;). Normal probability plot (see Unit 2):

6; (vertical) vs.®1([i — 0.5]/1) (horizontal)
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Figure 5:Normal Plot of Location Effects, Adapted Epitaxial Layerd@th Experiment
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Use of Normal Plot to Detect Effect Significance

e Deduction Step.Null hypothesidHg : all factorial effects = 0 . Undéf,
6; ~ N(0,02) and the resulting normal plot should followstaight line

e Induction Step. By fitting a straight line to the middle group of points
(around 0) in the normal plogny effect whose corresponding point falls off
the line is declared significariDaniel, 1959).

e Unliket or F test, no estimate af? is required. Method is especially
suitable forunreplicatedexperiments. It test,s? is thereference quantity
For unreplicated experiments, Daniel’s idea is to usentirenal curve as the
reference distribution

e In Figure 5,D, CD (and possibly\B?) are significant. Method is informal
and judgemental.
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Normal and Half Normal Plots
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Figure 6:Comparison of Normal and Half-Normal Plots
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Visual Misjudgement with Normal Plot

Potential misuse of normal plot :

In Figure 6 (top), by following the procedure for detectirifipet significance,
one may declar€, K andl are significant, because they “deviate” from the
middle straight line. This isvrongbecause it ignores the obvious fact tKaand
| are smaller tha andO in magnitude. This points to a potential visual
misjudgement and misuse with the normal plot.
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Half-Normal Plot

Idea: Order the absoluté;, values agd|;, < --- (6|, and plot them on
the positive axis of the normal distribution (thus the tetmalf-normal”).
This would avoid the potential misjudgement between th&tipesand
negative values.

Thehalf-normal probability plot consists of the points

(@1(0.5+0.5[ —0.5]/1),(6];), fori=1,...,2~ 1. (2)

In Figure 6 (bottom), onl{ is declared significant. Notice thKtandl no
longer stand out in terms of the absolute values.

For the rest of the bookalf-normal plots will be used for detecting
effect significance
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A Formal Test of Effect Significance : Lenth’s
Method

e Sometimes it is desirable to have a formal test that canmagsiglues to the
effects. The following method is also available in packdd@esSAS.

e Lenth’'s Method

1. Compute the pseudo standard error
PSE= 1.5-median g _, s, /6il,
where the median is computed among fBewith |8;| < 2.5s0 and
s = 1.5- mediani;|.

(Justification : Ifg; = 0 and error is normalky is aconsistenestimate of
the standard deviation @f Use of median gives “robustness” to
outlying values.)
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A Formal Test of Effect Significance (Contd.)

2. Compute

N

0; .
tpsEi = P—SIE’ for eachi.

If |tpskei| exceeds the critical value given in Appendix H (or from safte),
6; is declared significant.

e Two versions of the critical values are considered next.
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Two Versions of Lenth’s Method

e Individual Error Rate (IER)
Ho : all 6;’s = 0, normal error.
IERy at levela is determined by

Prob(|tpsei| > IERq|Ho) = a, fori=1,--- 1.

(Note : Becaus®; = 0, tpsgi has thesamedistribution undeiHg for all i.)

e Experiment-wise Error Rate (EER)

Prob(|tpsei| > EERy for atleastone,i =1,...,1|Ho)
= Prob( max [tpsgi| > EERy|Ho) = a.
1<i<|

e EER accounts for the number of tests done in the experimémiftan gives
conservative results (less powerful). In screening expents, IER is more
powerful and preferable because many of@fig are negligible (recall the
effect sparsity principle). The EER critical values caniftated by

considering many; values. (Why?)
25



lllustration with Adapted Epi-Layer Growth
Experiment

1. In Table 4, media;| = 0.078,5p = 1.5x 0.078 = 0.117.
Trimming constant sy = 2.5x 0.117=0.292, which eliminates 0.490
(D) and 0.345CD).
Then mediapg, _, 5,;/6i] = 0.058 PSE= 1.5 x 0.058= 0.087.
The correspondingpsg| values appear in Table 6.

2. Fora =0.01, IERy o1 = 3.63 for| = 15. By comparing with thépsg|
values,D andCD are significant at 0.01 level. Use of EER = 6.45 (for
| = 15) will not detect any effect significance. Analysis of theg| values
for Ins? (Table 6) detects no significant effect (details on page I82d),
thus confirming the half-normal plot analysis in Figure 4.18extion 4.8.

e p values of effects can be obtained from packages or by iiipg the
critical values in the tables in appendix H. (See page 182&Iémtration).
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tpsg| Values for Adapted Epi-Layer Growth
Experiment

Table 6:|tpsg| Values, Adapted Epitaxial Layer Growth Experiment

Effect y Ins?
A 0.90 0.25
B 1.99 1.87
C 0.90 1.78
D 5.63 0.89
AB 0.09 0.71
AC 1.07 0.41
AD 0.57 0.46
BC 0.67 1.27
BD 0.34 0.16
CD 3.97 1.35
ABC 1.13 0.51
ABD 0.29 0.67
ACD 0.34 0.00
BCD 1.26 0.05
ABCD 0.23 1.63
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Nominal-the-Best Problem

e There is a nominal or target valtdased on engineering design
requirements. Define a quantitative loss due to deviatignfiafm t.

Quadratic loss : L(y,t) = c(y —1)2.
E(L(y;t)) = cVar(y) +c(E(y) —t)*.

e Two-step procedure for nominal-the-best problem
(i) Select levels of some factors to minimizar(y).
(iSelect the level of a factor not in (i) to mo&y) closer tot.
A factor in step (ii) is arad justmenfactor if it has a significant effect on
E(y) but not onVar(y). Procedure is effective only if an adjustment factor
can be found. This is often done on engineering ground. (piasrof
adjustment factors : deposition time in surface film depmsiprocess, mold
size in tile fabrication, location and spacing of markingstiee dial of a
weighing scale).

28



Why Take In s> ?

It mapss? over (0s0) to In s> over (—o, ). Regression and ANOVA assume
the responses are nearly normal, i.e. ovep(o).

Better for variance prediction. Suppase: Ins?. 2= predicted value of
Ino?, thene? = predicted variance a¥?, always nonnegative.

Most physical laws have a multiplicative component. Log &vts/
multiplicity into additivity.

Variance stabilizing property: next page.
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In % as a Variance Stabilizing Transformation

Assumeyi; ~ N(0,02). Then(n

TakeX =

— 1§ =31 (ij —¥i)° ~ O X4 1

N’ =Ino? +In(X5 _1/(ni — 1)).

X a random variabléy a smooth function,

Var(h(X)) ~ [ (E(X))]?Var(X)

_ 2
Applying (3) toX = & |eads to

Var(In(X)) ~

In (2),v=n -1, Ins’ ~ N(Ina?,2(n;

2(n;

~1)

~1 is nearly constant fam;

30

>§,—5 andh = In. ThenE(X) =1 and VatX) = £

.22
(D25 =,

Vv

—1)~1). The variance of Is?,
—1>09.

(3)

(4)



Epi-layer Growth Experiment Revisited

Original data from Shoemaker, Tsui and Wu (1991).

Table 7: Design Matrix and Thickness Data, Original Epitakiayer Growth
Experiment

Design

A B C D Thickness v 2 Ins2

~ -~ — 4 | 14812 14774 14772 14794  14.860  14.914 14.821 | 0.003  -5.771
- — - — | 13768  13.778 13870  13.896  13.932  13.914 13.860 | 0.005  -5.311
— - 4+ + | 14722 14736 14774 14778  14.682  14.840 14.757 | 0.003  -5.704
~ - 4+ — | 13860  13.876  13.932  13.846  13.896  13.870 13.880 | 0.001  -6.984
-~ 4+ -+ | 1488 14810  14.868  14.876  14.958  14.932 14.888 | 0.003  -5.917
-+ - — | 14182 14172 14126 14274 14154  14.092 14.165 | 0.004  -5.485
- 4+ 4+ 4+ | 14758 14784 15054 15058  14.938  14.936 14.921 | 0.016  -4.107
- 4+ 4+ - | 13996 13988  14.044  14.028  14.108  14.060 14.037 | 0.002  -6.237
+ - - 4+ | 15272 14656 14258  14.718 15198  15.490 14.932 | 0.215  -1.538
+ - — - | 14324 14002 13536 13588  13.964  14.3%8 13.972 | 0.121  -2.116
+ - 4+ + | 13918  14.044 14926  14.962 14504  14.136 14.415 | 0.206  -1.579
+ - 4+ - | 13614 13202  13.704  14.264  14.432  14.278 13.907 | 0.226  -1.487
+ 4+ - 4+ | 14648 14350 14682 15034 15384  15.170 14.878 | 0.147  -1.916
+ 4+ - — | 13970 14.448 14326  13.970  13.738  13.748 14.032 | 0.088  -2.430
+ 4+ 4+ 4+ | 14184 14402 15544 15424 15036  14.470 14.843 | 0.327  -1.118
+ 4+ 4+ - | 13886  14.130 14256  14.000  13.640 13592 13.914 | 0.070  -2.653
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Epi-layer Growth Experiment: Effect Estimates

Table 8: Factorial Effects, Original Epitaxial Layer GrovExperiment

Effect y Ins?

A -0.055 3.834
B 0.142 0.078
C -0.109 0.077
D 0.836 0.632
AB -0.032 -0.428
AC -0.074 0.214
AD -0.025 0.002
BC 0.047 0.331
BD 0.010 0.305
CD -0.037 0.582
ABC 0.060 -0.335
ABD 0.067 0.086
ACD -0.056 -0.494
BCD 0.098 0.314
ABCD 0.036 0.109
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Epi-layer Growth Experiment: Half-Normal Plots
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Figure 7 : Location effects Figure 8 : Dispersion effects
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Epi-layer Growth Experiment: Analysis and
Optimization

From the two plotsD is significant fory andA is significant forz= Ins*.
D is an adjustment factor. Fitted models :

— 8+ PpXp = 14.389+0.418¢,
= Vo —I—VAXA = —3.7724+ 1.91 Ka,

N

Two-step procedure:

(i) ChooseA at — level (continuous rotation).

(I Choosexp = 0.266 to satisfy 15 = 14.389+ 0.418xp

If xp =30 and 40 seconds f& = — and—+, xp = 0.266 would correspond to
35+0.266(5) = 36.33 seconds.

Predicted variance
62 = exp(—3.772+ 1.917(—1)) = (0.058).

This is too optimistic! Predicted values should be validatath a

confirmation experiment
34



2% Designs in29 Blocks

e Example: Arranging a2design in 2 blocks (of size 4). Use the 123 column
In Table 9 to define the blocking scheme: block I if 123-=and block II if
123 =+. Therefore the block effect estimaté!) — y(I) is identical to the
estimate of the 123 interaction123= +) —y(123= —). The block effect
B and the interaction 123 are callednfounded Notationally,

B = 123

e By giving up the ability to estimate 123, this blocking scleemcreases the
precision in the estimates of main effects and 2fi’'s by anran§ runs in
two homogeneouBlocks.

e Why sacrificing 123?
ans Effect hierarchy principle.
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Arrangement of 2° Design in2 Blocks

Table 9: Arranging a2Design in Two Blocks of Size Four

Run| 1 2 3 12 13 23 123 Block
- - - + + 4+ =

+
+

0 N o 0o b~ W N
|

+ 4+ + o+
_|_
|
_|_
|
|
|
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A 23 Design in 4 Blocks

e Similarly we can us&; = 12andB, = 13to define two independent

blocking variables. The 4 blocks I, II, Il and IV are defineg®;, = + and
B =+
B
B — +
—
+ [V

e A 23design in 4 blocks is given in Table 9. Confounding relatiops:
B1=12,B,=13,B1Bo =12x 13=23. Thus 12,13 and 23 are confounded
with block effects and thus sacrificed.
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Arranging a 23 Design in 4 Blocks

Table 10: Arranging a2Design in Four Blocks of Size Two

Run| 1 2 3 B(=12 By(=13) 23 123 block
1] - — - + + + - WV
2| - — + + - - 4+
3| - + - - + - 4+
4| - + + = -~ + =
5|+ — - - -~ + o+
6|+ — + - + S
71+ + - + - — -
8|+ + + + + + o+ WV
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Minimum Aberration Blocking Scheme

e On page 38{1,12,13,23 forms theblock defining contrast subgroupfor
the 2 design in 4 blocks. For a more complicated exampredgsign in 8
blocks), see page 196 of WH.

e For any blocking schem let gij(b) = number ofi-factor interactions that
are confounded with block effects. Must requipéb) = 0 (because no
main effect should be confounded with block effects). Fortawo blocking
scheme®$; andby, letr = smallesi such thag;(b1) # gi(b2). If
gr(b1) < gr(b2), by is said to havéess aberratiorthan schemé;. (This is
justified by the effect hierarchy principle). A blocking sche hasninimum
aberrationif no other blocking schemes have less aberration.

e Minimum aberration blocking schemes are given in Table 4AXV#f.

e Theory is developed under the assumption oblaxk x treatment
Interactions.
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Comments on Board
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Figure 14-21
Geometric presenta-
tion of contrasts corre-
sponding to the main
effects and interaction
in the 2 design. (a)
Main effects. (b) Two-
factor interactions.

(¢) Three-factor
interaction.
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