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=== Figenvalues and Eigenvectors

SOUTH FLORIDA

Let 4:X—X be a linear transformation. Those vectors
z € X, which are not equal to zero, and those scalars
A which satisty

A(z) =\ z

are called eigenvectors and eigenvalues, respectively.

]
X y=AX) Can you find an eigenvector

/ for this transformation?
e

S1
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Computing the Eigenvalues

N

S

Az = Lz
[A-AIz =0 |::> [A-11]] =0
Skewing example (45°):
=1
[1—?\, 1] =0 (1—}\,)2:0 1
0 1-A , =1

A S S AR

For this transformation there 1s only one eigenvector.




Diagonalization
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Perform a change of basis (similarity transformation) using
the eigenvectors as the basis vectors. If the eigenvalues are
distinct, the new matrix will be diagonal.

B - [ Z1,Zy - Zny  Eigenvectors
Z, 7; Zy

Ay by Elgenvalues

A 0 ... 0

[B_IAB] _ O x.z O

0 0 ...A

1=
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Example

11

A =0
=0 A7 oA =(A)A-2)=0 1 -2 1, _
A, N

oo PR L e
11 11 Z, 0 1

}L2:2::>|: ][;l y = Iy Z2:|:1]
1 —1 1 —1 22 1

Diagonal Form:  A' = [B'AB] = [1 /2 -1 /2] [1 1][1 1] _ [O O]
12 12fbdl-rd Loz

- Y
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Taylor Series Expansion

F(X) = F(x*) +

L1
2d

F(x)l

2
~F(x)

1 d"

+~——F(X)

v
N2 X"

*(X—X*)

(X_X*)2-|-

X = X*

(X_X*)n+

X = X*




pa—
Example

UNIVERSITY OF
SOUTH FLORIDA

F(x)=¢e

Taylor series of F(X) about x*=0:

Fx) =e* = e’—e’(x —O)Jr%e_o(x—0)2—ée_0(x—0)3 + ..

1 2 13
F(x) =1-X+=x"—=x+...
(X) 2 6

Taylor series approximations:
F(x)= Fy(x) = 1
F(X) =F(x) = 1-X

1
F()~Fy(x) = 1-x+35%

\ 2
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Plot of Approximations
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F(X) = F(X{ X, ooiy X))

0
F(x) = F(x*)+—F<x)| =X+ 5 F M) %)
2 frny
0 2
+ ... +—F X *) 4 ——— *
o TOO| O =) 2ax1F( | C R
192
4+ = — * — *
2ax18x2|:(x) X=X*(X1 X1F)(Xy = Xp*) +
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Matrix Form

Gradient

0
PRI

< r(x)

VE(x) = [0X,

0

ox, )

VZF(X) =

Fx) = Fox+ VR x

T
+l(x—x*) VZF(X)l J(X=XF)+ -
2 X =X

Hessian

2 2

9, 9,
—F(x)

2 2

0 0
F(x) —F(x)

2 2

0 - 0
O0Xn0X1 (%) éxnéxzr(x)

F(X) ...
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Directional Derivatives
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First derivative (slope) of F(x) along X; axis: JF(X) /0Xx;

(ith element of gradient)

Second derivative (curvature) of F(x) along X; axis: O°F(x)/ axi2

(1,1 element of Hessian)

p' VF(x)

First derivative (slope) of F(x) along vector p: >

p VAE(X)p
lIpll 2

Second derivative (curvature) of F(x) along vector p:

N
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Example

VF(X)lX e

F(x) = x? +2X X, +2x§

. [0.5]
0

0
axlF(X)

0

a—sz(XZ

pTVF(x) _

"P"

[1 -]

K
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Plots

Directional
Derivatives
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Strong Minimum

The point x* 1s a strong minimum of F(x) 1f a scalar 0> 0 exists,
such that F(x*) < F(x*+ Ax) for all Ax such that 0> ||Ax||>0.

Global Minimum

The point x* 1s a unique global minimum of F(x) 1f
F(x*) < F(x*+ Ax) for all Ax#0.

Weak Minimum

The point x* 1s a weak minimum of F(x) 1f 1t is not a strong

minimum, and a scalar 0>0 exists, such that F(x*) < F(x* + Ax)
for all Ax such that 0> ||Ax||>0.
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Scalar Example

F(x) = 3x4—7x2—%x+ 6

Strong Maximum

Strong Minimum

Global Minimum

| | |
-1 0 1




Vector Example

4
F(x) = (xz—xl) +8x1x2—x1 + x2+3 F(x) = (x%— 1.5x1x2+2x§)x?

LR
\2229&\\%\:‘22 /

0 <
2
1 2
0 1
0
1 1
2 2

S

/




First-Order Optimality Condition
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F(x) = F(x*+AX) = F(x*)+V F (x)T‘ JAX leTV2F(x)| AX A
X =X 2 X =X

AX = X - x*

For small Ax: If x* is a minimum, this implies:

F(x* +AX) = F(x*) + VF(X)T‘ AX VF(X)T‘ AX > 0
X =Xx" X=Xx"

If VF(X)T AX> 0 then F(X*-AXx)= F(x*)- VF(X)T‘ JAX <F(x*)
X=X X=X

T
But this would imply that x* is not a minimum. Therefore VF(X) ‘X B X*AX =0

Since this must be true for every Ax, [VF(X)I ., =0 }
X =X




Second-Order Condition

SOUTH FLORIDA
If the first-order condition is satisfied (zero gradient), then

F(x* +AX) = F(x*)+ 1AxTV2F(x)| AX 4 -
2 X = x*

.. . : . T
A strong minimum will exist at x* if AX VzF(X)I LAX >0 for any Ax#0.
X=X

Therefore the Hessian matrix must be positive definite. A matrix A is positive definite if:

-
[Z AZ>O] for any z # 0.

This is a sufficient condition for optimality.

A necessary condition is that the Hessian matrix be positive semidefinite. A matrix A is
positive semidefinite if:

-
[Z AZZO] for any z.
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Example

2 2
F(X) = X{+2X X, +2X; + X,

2X, +2X, +1 1
VF(X)[ e ]0 — > x*z[]
2x1+4x2

0.5

V2F(x) = 22 (NO'F a fqnction of x
74 in this case.)

To test the definiteness, check the eigenvalues of the Hessian. If the eigenvalues

are all greater than zero, the Hessian is positive definite.

[2 a2 ]
2 4-)

IV2F(x) — 01 = — AP 6h+4 = (A—0.76)(h— 5.24)

A = 0.76,5.24 Both eigenvalues are positive, therefore strong minimum.

N
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QQuadratic Functions
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1 T T
F(x) = 5X Ax+d x+c (Symmetric A)

Gradient and Hessian:

/Useful properties of gradients: A
V(h'x) =V(x h) = h
VXTQX = Qx +QTX = 20Qx (for symmetric Q)
- J

Gradient of Quadratic Function:

[VF(X) - Ax +d ]

Hessian of Quadratic Function:

[ VIF(X) = A ]




Eigensystem of the Hessian
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Consider a quadratic function which has a stationary
point at the origin, and whose value there is zero.

F(x) = %XTAX

Perform a similarity transform on the Hessian matrix,
using the eigenvalues as the new basis vectors.

B = [Zl Zy ... Zn]

Since the Hessian matrix 1s symmetric, 1ts eigenvectors
r hogonal. -
are orthogona B! - BT

A'=[BTAB]= 0%20 _ A A = BAB
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Second Directional Derivative
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T T
p V2ZF(xX)p _ p Ap
Ipl? Ipl*

Represent p with respect to the eigenvectors (new basis):

p = Bec

n
2
A;iC:
pTAp _ cTBT(BABT)Bc _ ¢'Ac _ Z"l !

||p||2 ¢ B'Be ¢ c Zn: o2
i

=1

T
P AP <\

min = 2 — “max
Ipl
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Eigenvector (Largest Eigenvalue)
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—~

P = Zmax c Z:BTp ZZBTZmaX==

n
2
A;C;
ZmaxTAZmax ig% -
P,

n
> ci

=1

|| max
Zmax

The eigenvalues represent curvature
(second derivatives) along the eigenvectors

(the principal axes).
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Circular Hollow
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2 2 1 _ T|120
F(x) = x7+ X5 = =x X
1 2 2 [02]

_ 10
02 0 1

(Any two independent vectors in the plane would work.)
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Elliptical Hollow
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F(x) = x?+ x1x2+x§ = 1XT[Z 1]
12

2
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Elongated Saddle

12 3 12 _1.T7][-05-15
F(x) = — 7% XX g% T 5X [ ]x

2 2

—1.5 -0.3

27
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- Quadratic Function Summary
 [f the eigenvalues of the Hessian matrix are all positive, the
function will have a single strong mimmimum.

 If the eigenvalues are all negative, the function will have a
single strong maximum.

» If some eigenvalues are positive and other eigenvalues are
negative, the function will have a single saddle point.

 If the eigenvalues are all nonnegative, but some
eigenvalues are zero, then the function will either have a
weak minimum or will have no stationary point.

 If the eigenvalues are all nonpositive, but some
eigenvalues are zero, then the function will either have a
weak maximum or will have no stationary point.

{ Stationary Point: x* = ~A"'d
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Basic Optimization Algorithm
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[ Xk+1 = Xk T okPk ]

or

AXy = (Xg+1—Xg) = o Py

Xk+1

akPk
Xk

p, - Search Direction

o, - Learning Rate




Steepest Descent
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Choose the next step so that the function decreases:
F(Xk+1 ) < F(Xk)

For small changes 1n x we can approximate F(x):
F(Xy 1) = F(X+AX,) = F(X,) + g AX,

where

ngVF(X)IX -
- Ak

If we want the function to decrease:
T T
gkAX, = agkPk <0

We can maximize the decrease by choosing:
Pk = —8k

[Xk+1 = Xy _akgk]
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Example

VF(x) =

F(x) = X? +2X1X

!

k
[2

0.2

X1+2X2+

|

2X1+ 4X2

0
0

0.2

,5]_0.1[3] _ 0.2]
s 3 o2
01[1 8] _ 0.02]
12l lo.os

2
, T 2X5+ X,

0.1

g, = VF(X)l B




SF Plot

SOUTH FLORIDA
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Stable Learning Rates (Quadratic)
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F(x) = %XTAX+ d'x+c

VF(x) = AX +d

Xk+1 = Xk —ag = Xk—OL(AXk+d) |::> X+1 T [I—OLA]Xk—OLd
H_/
Stability is determined

by the eigenvalues of
this matrix.

[I-0aAlz, =z,-aAz;, = z,-a)rz; = (1 -al)z,

.V
(A; - eigenvalue of A) Eigenvalues
of [T - A
Stability Requirement:
2 2
(I-—adry| <1 o<= o<
I i I A [ Ay }
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~

o = 0.37

oo e




{UST]

UNIVERSITY OF
SOUTH FLORIDA

Minimizing Along a Line

Choose a, to minimize F(x, + o, py)

d
2o FO%H 04i) = V|:(x)T|X )

VE(X)' |
. X = Xk .
o = — =
ka2F(X)|

XXk

where

A = v2|:(x)|X .
— Ak

TPy VZF(X)l

Pk
=
Pr APy

X = Xy

Py

37
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Example

F(x) = %xT

0

- (X)

+ +
VF(X) _ 8X1 _ |:2X1 2X2

0

B

Bifi

“1-3

SN

2X1+ 4X2

P w0

1
] Po = 80 <

vl 7|

|

SR N

2 X = Xg—0pg) = [
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Plot

Successive steps are orthogonal.

do,

do,

2

d
—I X, t o, Pyl

T
F(x = VF(x
(Xys1) el )

39
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Newton’s Method
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T T
F(Xy+ 1) = F(X¢ TAXy) =~ F(Xg) + gAXy + %AXkAkAXk

Take the gradient of this second-order approximation
and set 1t equal to zero to find the stationary point:

gk+ AkAXk =0

40



QUSKH

UNIVERSITY OF
SOUTH FLORIDA

Example

SR

2 4

N

VF(X) =

0

FYRRSS

0

F(x) = x? +2XX, +2x§+ X,
0.5
0.5

g = VFM)|. = H
_ 2X1+2X2+1 X = Xo 3
2X1+4X2

= (X)

8X2

1

Bl - B0 -

41
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Plot
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Non-Quadratic Example
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4
F(X) = (X2—X1) +8X1X2—X1+X2+3

: : L [—0.42] 2 _ [—0.13]
Stationary Points: X = X =
0.42 0.13

3 _ [0.55]
X =
—0.53

F,(x)

F(x)
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Conjugate Vectors
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I 7 T
F(x) = 5X Ax+d x+¢c

A set of vectors 1s mutually conjugate with respect to a positive
definite Hessian matrix A 1f

pIApjzo K # ]

One set of conjugate vectors consists of the eigenvectors of A.
ZIAZJ- = ANz

(The eigenvectors of symmetric matrices are orthogonal.)




For Quadratic Functions
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VF(x) = AX +d

VIF(x) = A

The change in the gradient at iteration K is

Ag, = 8 .18 = (AX, ,, +d)- (Ax, +d) = AAX,

where
AXy = (Xg+1—Xk) = oy Pk

The conjugacy conditions can be rewritten

T T T :
o P, Ap; = AX Ap; = Agp;j=0 k=]

This does not require knowledge of the Hessian matrix.
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Choose the 1nitial search direction as the negative of the gradient.

Py = 8

Choose subsequent search directions to be conjugate.

Pk = — 8t ByPk-1
where
T T T
o Ag 18 _ Sk8«k _ gy 18
Bk = —= or Py = — or Bx=—=
AZk_1Pk-1 Sk 181 Sk_18Kk—_1

47



Conjugate Gradient algorithm
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The first search direction 1s the negative of the gradient.

Py = &

Select the learning rate to minimize along the line.

vVE®'|  p,

.
a = — X = Xk __ _8kPx (For quadratic

PIVzF(X)I Py p-krAkpk functions.)
X = X

Select the next search direction using

Pk = — 8kt ByPx-1

If the algorithm has not converged, return to second step.

e A quadratic function will be minimized in n steps.
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Example

F(x) = %xT

0

- (X)

+ +
VF(X) _ 8X1 _ |:2X1 2X2

0

B

Bifi

“1-3

SN

2X1+ 4X2

P w0

1
] Po = 80 <

vl 7|

|

R R

2 X; = Xg—0p8) = [
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0.6 Y I s
— g+ _ +0.04[2] =
P1 = —8 PP _0.6] [—3] [0.48]

0.6 ~0.6] [0‘72]

0.48
- - L on_
[—O 2 0 48] [2 2] [—0.72] '
' ' 2 4]110.48
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Plots

X, = Xy ta,p; = [

Conjugate Gradient

0.1] 105 [—0.72] _ [—1]
0.1 048] |o.

Steepest Descent




