Disclaimer: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All person copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Abstract: Industry in the 21st century is investing in a variety of sensor networks and dedicated data centers to increase information visibility. Advanced sensing captures a wealth of information on the condition and status of a product, process or a system. As a result, we are facing spatially and temporally data-rich environments. The next major challenge is in harnessing the big data to bring substantial improvements to the design and operations, particular in quality and integrity assurance, of complex systems. This talk will present an integral approach of physics-based modeling and sensor-based informatics to advance knowledge discovery and innovation in complex systems. First, I will describe a new physical-statistical modeling approach for efficient and effective computer experiments and optimization of cardiac models. Computer modeling and experiments provide physiologists and cardiologists an indispensable tool to characterize and model cardiac functions in health and in disease, as well as to optimize medical decision making. In this study, an easy-to-evaluate surrogate model is developed for faster approximation and calibration of cardiac models to investigate glycosylation-altered kinetics of Na+ ion channels and the causal effects on cardiac cells. Second, I will talk about a new approach of sparse particle filtering for modeling spatiotemporal dynamics of big data in distributed sensor networks. Distributed sensing gives rise to spatially-temporally big data. Realizing the full potentials of distributed sensing calls for space-time data fusion in the dynamically-evolving physical environment. In this study, we developed a sparse particle filtering model to recursively estimate and update latent state variables for predicting nonlinear stochastic dynamics and modeling close interactions between spatial and temporal processes in distributed sensor networks. In the end, future research directions will be discussed.
Abstract: Rapid advancement of distributed sensing and imaging technology brings the proliferation of high-dimensional spatiotemporal data, i.e., y(s; t) and x(s; t) in manufacturing and healthcare systems. Traditional regression is not generally applicable for predictive modeling in these complex structured systems. For example, infrared cameras are commonly used to capture dynamic thermal images of 3D parts in additive manufacturing. The temperature distribution within parts enables engineers to investigate how process conditions impact the strength, residual stress and microstructures of fabricated products. The ECG sensor network is placed on the body surface to acquire the distribution of electric potentials y(s; t), also named body surface potential mapping (BSPM). Medical scientists call for the estimation of electric potentials x(s; t) on the heart surface from BSPM y(s; t) so as to investigate cardiac pathological activities (e.g., tissue damages in the heart). However, spatiotemporally varying data and complex geometries (e.g., human heart or mechanical parts) defy traditional regression modeling and regularization methods. This talk will present a novel physics-driven spatiotemporal regularization (STRE) method for high-dimensional predictive modeling in complex manufacturing and healthcare systems. This model not only captures the physics-based interrelationship between time-varying explanatory and response variables that are distributed in the space, but also addresses the spatial and temporal regularizations to improve the prediction performance. In the end, we will introduce our lab at Penn State and future research directions will also be discussed.
Please click this DOI link for presentation slides DOI:10.13140/RG.2.2.10914.73920
If a talk looks interesting, please feel free to contact me for a presentation or seminar in person.
Biography: Dr. Hui Yang is a Professor of Industrial and Manufacturing Engineering, Biomedical Engineering at Penn State, and is affiliated with Penn State Cancer Institute (PSCI), Clinical and Translational Science Institute (CTSI), Institute for Computational and Data Sciences (ICDS), CIMP-3D. Currently, he serves as the director of NSF Center for Health Organization Transformation (CHOT). Prior to joining Penn State in 2015, he was an Assistant Professor in the Department of Industrial and Management Systems Engineering at the University of South Florida from 2009 to 2015.
Dr. Yang's research interests focus on sensor-based modeling and analysis of complex systems for process monitoring, process control, system diagnostics, condition prognostics, quality improvement, and performance optimization. His research program is supported by National Science Foundation (including the prestigious NSF CAREER award), National Institute of Health (NIH), National Institute of Standards and Technology (NIST), MxD-The Digital Manufacturing and Cybersecurity Institute, CESMII-The Smart Manufacturing Institute, Fulbright Foundation, Lockheed Martin, IBM, GM, NSF center for e-Design, Susan Koman Foundation, Highmark, Siemens Healthineers, NSF Center for Healthcare Organization Transformation, Institute of Cyberscience, James A. Harley Veterans Hospital, and Florida James and Esther King Biomedical research program. His research group received a number of best paper awards and best poster awards from IISE, IEEE EMBC, IEEE CASE, and INFORMS Conferences.
Dr. Yang is the president (2017-2018) of IISE Data Analytics and Information Systems Society, the president (2015-2016) of INFORMS Quality, Statistics and Reliability (QSR) society, and the program chair of 2016 Industrial and Systems Engineering Research Conference (ISERC). He is also the Editor-in-Chief (EIC) for IISE Transactions Healthcare Systems Engineering, as well as an Associate Editor (AE) for IISE Transactions, IEEE Journal of Biomedical and Health Informatics (JBHI), ASME Journal of Computing and Information Science in Engineering (JCISE), IEEE Transactions on Automation Science and Engineering (TASE), IEEE Robotics and Automation Letters (RA-L), Quality Technology & Quantitative Management, and an Associate Editor for the Proceedings of IEEE CASE, IEEE EMBC, and IEEE BHI. He serves as a referee for a diverse set of top tier research journals such as Physical Review, IEEE Transactions on Biomedical Engineering, IEEE Journal of Biomedical and Health Informatics, Biophysical Journal, IIE Transactions, Technometrics, and IEEE Transactions on Automation Science and Engineering. He is a professional member of IEEE, IEEE EMBS, INFORMS, IIE, ASEE and American Heart Association (AHA).
Photo: